

MODEL 05G

OPERATION AND SERVICE MANUAL 05G COMPRESSOR

TABLE OF CONTENTS

Section		Page
1	DESCRIPTION 1.1 General Description	1-1 1-2 1-2 1-2 1-3 1-3 1-5 1-6 1-7
2	COMPRESSOR REPLACEMENT 2.1 Compressor Removal	2-1 2-1 2-2 2-3
3	COMPRESSOR MAINTENANCE 3.1 Compressor Disassembly	3-1 3-2 3-3 3-5 3-6 3-6 3-7 3-8 3-8 3-9 3-11 3-12 3-13 3-14 3-14 3-14

LIST OF ILLUSTRATIONS

Figure		Page
1-1 1-2	Model 05G Compressor, with Unloaders	1-1 1-3 1-4
1-3	Solenoid-Operated Unloader, Unloaded Operation	1-4
1-4	Solenoid-Operated Unloader, Loaded Operation	1-5
1-5	Pressure-Operated Unloader, Loaded Operation	1-5
1-6	Pressure-Operated Unloader, Unloaded Operation	1-5 1-6
1-7	Lubrication System	1-6 1-7
1-8	Suction or Discharge Service Valve	1-7
2-1	Removal of Bypass Piston Plug	2-2
3-1	Cylinder Head Removal	3-1
3-2	Exploded View of Valve Plate Assembly	3~1
3-3	Valve Plate Removal	3-2
3-4	Bottom Plate Removal	3-2
3-5	Bottom Plate and Oil Strainer Removed	3-2
3-6	Connecting Rod Caps Removed	3-3
3-7	Piston Rings Removed	3-3
3-8	Oil Pump Cover and Spring Removal	3-3
3-9	Bearing Head and Oil Pump Cover Removed	3-4
3-10	Oil Pump Bearing Head Assembly and Thrust Washer Removal	3-4
3-11	Shaft Seal Cover and Carbon Washer Removal	3-5
3-12	Shaft Seal Removal	3-5
3-13	Oil Pump and Bearing Head Assembly Exploded View	3-6
3-14	Connecting Rod, Piston, and Pin	3-7
3-15	Installing Piston Rod Assemblies and Seal End Thrust Washer	3-8
3-16	Piston Rings	3-9
3-17	Installing Oil Pump and Bearing Head Assembly and Pump End	3-10
	Thrust Washer	3-10 3-11
3-18	Installing Pistons	3-11
3-19	Shaft Seal Exploded View	3-12 3-12
3-20	Installing Shaft Seal	3-12 3-13
3-21	Installing Suction Valves and Strainer	3-13 3-13
3-22	Installing Valve Plate and Gasket	
3-23	Checking Suction Valve	3-13 3-14
3-24	Installing Discharge Valve and Valve Stop	
3-25	Model 05G Compressor Exploded View	3-15
	LIST OF TABLES	
	EBI OF INDEED	
Table		Page
3-1	Torque Values	3-16
3-2	Wear Limits	3-16

SECTION 1

DESCRIPTION

1.1 GENERAL DESCRIPTION

The Carrier Transicold Model 05G compressors are designed for refrigeration and air conditioning applications. These compressors are of the open, reciprocating type, that is, of positive displacement. A crankshaft, connecting rods, pistons, and reed type valves accomplish vapor compression. Compressor wear is minimized by splash lubrication and force feed lubrication, which is accomplished by an oil pump driven directly from the end of the compressor crankshaft.

The tapered end of the crankshaft, which extends outside the crankcase, is adaptable to a variety of direct drive mechanisms. See figure 1-1. A mechanical seal prevents refrigerant leakage where the rotating shaft passes through the crankcase.

The compressor is equipped with flanges for connecting suction and discharge service valves. Connections are also provided for pressure gauges and safety cutout switches. A sight glass provides a means of checking oil level in the compressor crankcase. A drain plug facilitates draining of oil from the crankcase and an oil fill plug enables addition of oil when necessary. A bottom plate provides access through the bottom of the crankcase for maintenance.

Capacity of the Model 05G compressor is determined by piston displacement and clearance, suction and discharge valve size, compressor speed, suction and discharge pressure, type of refrigerant, and unloader solenoid valves.

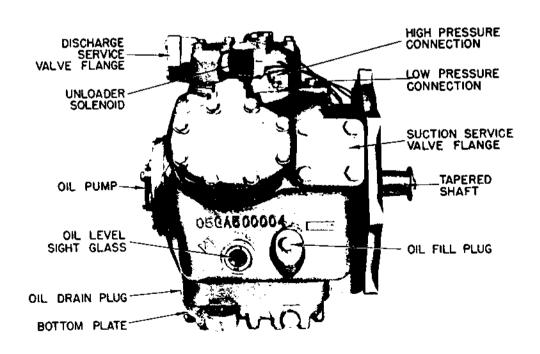


Figure 1-1. Model 05G Compressor, with Unloaders

1.2 COMPRESSOR REFERENCE DATA

Manufacturer Carrier Transicold

Model No. 05G

No. of Cylinders 6

Bore 2" (50, 8 mm)

Stroke 1-15/16" (49.2 mm)

Operating Speed 1350 to 1950 rpm (1750 rpm, nominal)

Minimum Speed (for lubrication) 900 rpm

Horsepower 15, nominal

Oil Charge 8.0 pints (3.78 litres)

Weight (less service valves) 165 lb (75 kg)

Approved Oils*

Sun Oil Co. Suniso 3GS
Dupont Zephron 150
Texaco WFI 132

*NOTE: The above oils are suitable for use with reciprocating compressors using R-12 or R-22 and with evaporator temperatures above -40°F (-40°C).

1.3 DETAILED DESCRIPTION

1.3.1 SUCTION AND DISCHARGE VALVES

The compressor uses reed type suction and discharge valves made of highest quality steel for long life. The valves operate against hardened integral seats in the valve plate.

The pistons move in a straight line, but alternately in divergent directions. The downstroke of the piston admits refrigerant gas through the suction valve, and then compresses this gas on the upstroke, thereby raising its temperature and pressure. The compressed gas is prevented from re-entering the cylinder on its next downstroke by the compressor discharge valve. See figure 1-2 for a diagram of the gas flow through a compressor without capacity control unloaders. For compressors equipped with unloaders, refer to paragraph 1.3.2 and figures 1-3 through 1-6.

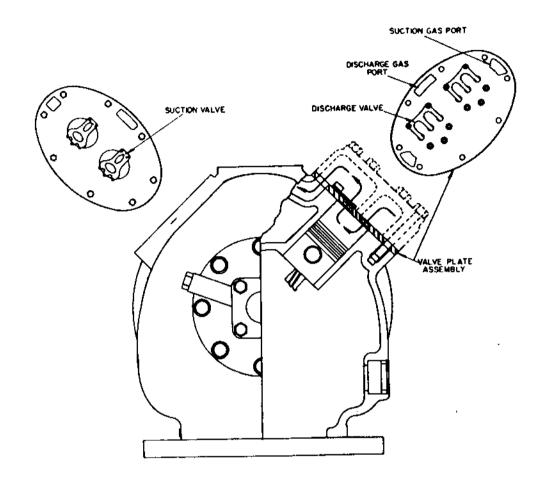


Figure 1-2. Gas Flow Through Model 05G Compressor Without Capacity Control

1.3.2 CAPACITY CONTROL UNLOADERS

There are two types of optional capacity control unloaders used with the 05G Compressors: electric solenoid-operated and pressure-operated unloaders. Both of these unloaders are of the snap-action, cylinder head bypass type, using a piston type control valve to control discharge gas flow. They differ primarily in the method of controlling the bypass control valve. The two types of unloaders can be easily identified by their shape. See figures 1-3 through 1-6.

1.3.2.1 Electric Solenoid-Operated Unloaders

The unloader solenoid is controlled by either a pressure switch or temperature switch (thermostat). When demand for refrigeration decreases, the pressure or temperature switch energizes the solenoid which unloads the cylinder and allows discharge gas to circulate as shown in figure 1-3. The unloaded cylinders operate with little or no pressure differential, consuming very little power. When the solenoid is de-energized, cylinders reload allowing discharge gas to circulate as shown in figure 1-4.

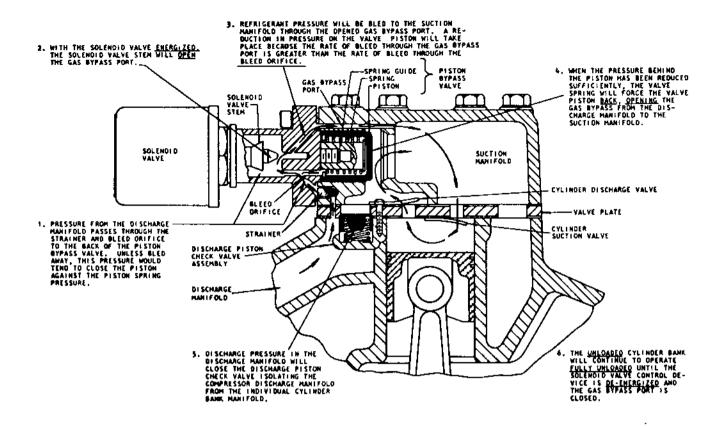


Figure 1-3. Solenoid-Operated Unloader, Unloaded Operation

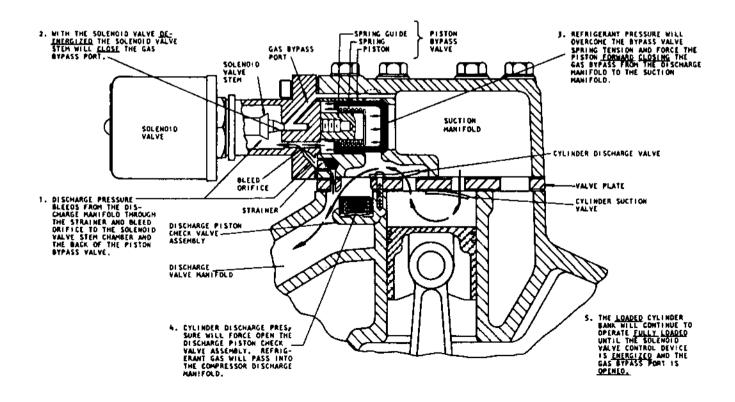


Figure 1-4. Solenoid-Operated Unloader, Loaded Operation

1.3.2.2 Pressure-Operated Unloaders

The pressure-operated unloaders are controlled by suction pressure and actuated by discharge pressure. Each unloader valve controls two cylinders. On startup, controlled cylinders do not load up until differential between suction and discharge pressure is 10 psi (0.7 kg/cm²).

During <u>loaded operation</u>, when suction pressure is above the valve control point, the poppet valve will close. Discharge gas bleeds into the valve chamber; the pressure closes the bypass piston; and the cylinder bank loads up. Discharge gas pressure forces the check valve open, permitting gas to enter the discharge manifold. See figure 1-5.

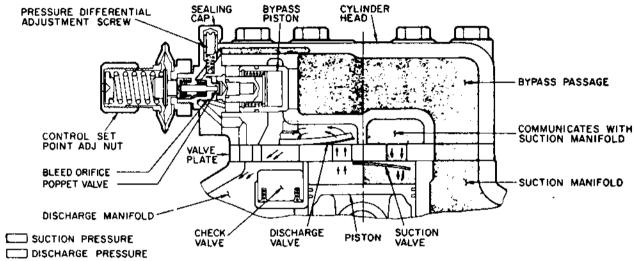


Figure 1-5. Pressure-Operated Unloader, Loaded Operation

During unloaded operation, when suction pressure drops below the valve control point, the poppet valve will open. Discharge gas bleeds from behind the bypass piston to the suction manifold. The bypass piston opens, discharge gas is recirculated back to the suction manifold and the cylinder bank is unloaded. Reduction in discharge pressure causes the check valve to close, isolating the cylinder bank from the discharge manifold. See figure 1-6.

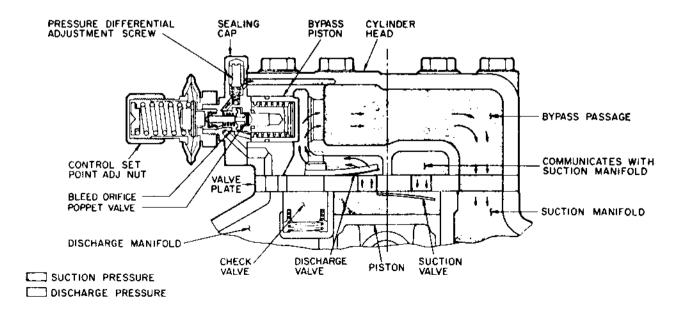


Figure 1-6. Pressure-Operated Unloader, Unloaded Operation

1.3.3. LUBRICATION SYSTEM

Force-feed lubrication of the compressor is accomplished by an oil pump driven directly from the compressor crankshaft. Refrigeration oil is drawn from the compressor crankcase through the oil filter screen and pick up tube to the oil pump located in the bearing head assembly. The crankshaft is drilled to enable the pump to supply oil to the main bearings, connecting rod bearings, and the shaft seal. (See figure 1-7.) The lubricating oil is pumped through the lube system by means of two spring loaded plungers operating on an eccentric rotor. See figure 3-13, page 3-6.

The oil flows to the pump end main bearings, connecting rod bearings and seal end main bearings, where the oil path is divided into two directions. The largest quantity flows to the oil relief valve, which regulates oil pressure at 15 to 18 psi (1.07 to 1.29 kg/cm²) above suction pressure. When the oil pressure reaches 15 to 18 psi (1.07 to 1.29 kg/cm²) above suction pressure, the relief valve spring is moved forward allowing oil to return to the crankcase. The remaining oil flows through an orifice and into the shaft seal cavity to provide shaft seal lubrication and cooling. This oil is then returned to the crankcase through an overflow passage.

The oil pressure equalization system consists of two oil return check valves and a 1/8-inch pressure equalization port between the suction manifold and crankcase. Under normal conditions, check valves are open and allow for oil return to the crankcase. Under flooded start conditions, pressure rises in the crankcase and closes the check valves, preventing excess oil loss. The equalization port allows for release of excessive pressure, that has built up in the crankcase, to the suction manifold; this ensures that the oil loss is kept to a minimum.

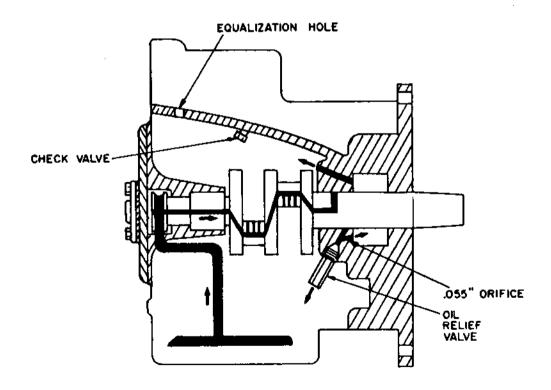


Figure 1-7. Lubrication System

1.3.4 SUCTION AND DISCHARGE SERVICE VALVES

The suction and discharge service valves furnished for use on the 05G compressors are equipped with mating flanges for connecting to flanges on the compressor. See figure 1-1. These valves are provided with a double seat and a gauge connection, which enable servicing of the compressor and refrigerant lines.

Turning the valve stem clockwise (all the way forward) frontseats the valve, closing off the suction and discharge lines and opening up the gauge connection to the compressor. See figure 1-8. Turning the valve stem counterclockwise (all the way out) backseats the valve, opening up the suction or discharge line to the compressor and closing off the gauge connection.

With the valve stem midway between frontseated and backseated positions, suction or discharge line is open to both the compressor and the gauge connection.

For example, when connecting manifold gauge to measure suction or discharge pressure, ensure valve stem is fully backseated. Then, to measure suction or discharge pressure, partially frontseat (about two turns) the valve stem.

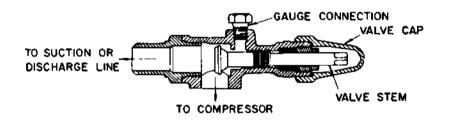


Figure 1-8. Suction or Discharge Service Valve

SECTION 2

COMPRESSOR REPLACEMENT

2.1 COMPRESSOR REMOVAL

Refer to the operation and service manual covering the equipment in which the compressor is installed for specific removal instructions. A general removal procedure is given below.

- a. If compressor is completely inoperative, frontseat the suction and discharge service valves to trap the refrigerant in the unit. If the compressor will operate, pump down the unit; then, frontseat the suction and discharge service valves.
- b. Slowly loosen plug in gauge connection on suction and discharge service valve and bleed refrigerant pressure to atmosphere.
- c. Disconnect refrigerant lines at service valve flange connections on the compressor; retain hardware.
- d. Ensure power source is removed from any controls installed on the compressor (e.g. capacity control solenoids, pressure switches, etc.). If solenoid unloaders are installed, remove solenoid coils.
- e. Remove any components necessary to gain access to the compressor or to enable removal.
 - f. Disconnect the drive mechanism at the compressor.
 - g. Remove mounting hardware and remove compressor from unit.
- h. If compressor is to be repaired, refer to Section 3 for repair procedures. If a replacement compressor is to be installed, refer to paragraph 2.2 for replacement procedures.

2.2 COMPRESSOR REPLACEMENT

Consult the unit service parts list for the correct replacement compressor and ensure one is available for installation.

Service replacement compressors are normally furnished without suction and discharge service valves and capacity control unloaders. The service valves are normally retained on the unit to isolate the refrigerant lines during compressor replacement. Blank-off pads are usually installed on the service valve flanges. These pads must be removed prior to installing the compressor. If the faulty compressor is to be returned for overhaul or repair, install the pads on the compressor for sealing purposes during shipment.

Service replacement compressors are normally furnished with cylinder head bypass piston plugs installed on the unloader flanges in lieu of the unloader valves. If capacity control unloaders are required, the unloaders must be removed from the faulty compressor and transferred to the replacement prior to installation. Refer to paragraph 2.2.1.

If the faulty compressor is to be returned for overhaul or repair, install the plugs on the compressor for sealing purposes during shipment. If the unloaders are inoperative, new ones may be purchased separately; consult the compressor or unit parts list for ordering information.

2. 2. 1 INSTALLING CAPACITY CONTROL UNLOADERS

a. Remove the three socket head capscrews holding piston plug to cylinder head of the replacement compressor. See figure 2-1.

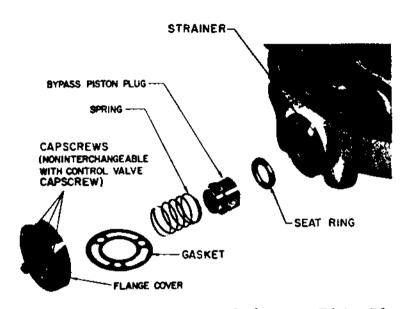


Figure 2-1. Removal of Bypass Piston Plug

- b. Remove flange cover, gasket, spring, bypass piston plug, and seat ring. A tapped hole is provided in piston plug for use with a jackscrew to enable removal of the plug. One of the socket head capscrews may be used as a jackscrew.
- c. Remove the three socket head capscrews holding unloader in the cylinder head of the faulty compressor; remove the unloader and retain the capscrews.

NOTE

Capscrews removed from the bypass piston plug flange cover are not interchangeable with capacity control unloader capscrews. When installing the unloaders, be sure to use the unloader capscrews.

- d. Using a new gasket, install the unloaders in the cylinder heads of the replacement compressor. See figure 2-1. Refer to table 3-1, page 3-16, for required torque values.
- e. If the defective compressor is to be returned for overhaul or repair, install the bypass piston plug, spring, seat ring and flange cover onto the cylinder heads.

2. 2. 2 INSTALLING COMPRESSOR

CAUTION

Do not backseat (open) suction and discharge service valves until the compressor has been leak tested and evacuated.

- a. Install the compressor in the unit by reversing the procedure of paragraph 2.1, steps b. through g. Install new locknuts on compressor mounting bolts and new gaskets on suction and discharge service valves.
- b. Check oil level in oil level sight glass. Oil level should be between bottom 1/8 and 1/2 of sight glass. If necessary, add or remove oil.
 - c. Leak test, evacuate, and dehydrate the compressor.
 - d. Fully backseat suction and discharge service valves.
 - e. Start the unit and check for leaks and noncondensibles in the refrigerant system.
 - f. Check refrigerant level.
 - g. Recheck compressor oil level.
 - h. Check operation of capacity control unloaders (if installed).
 - i. Check unit refrigeration cycles.

SECTION 3

COMPRESSOR MAINTENANCE

3.1 COMPRESSOR DISASSEMBLY

Prior to disassembly of the compressor, oil must first be drained from the crank-case. Place the compressor in a position where it will be convenient to drain the oil. Remove the oil fill plug to vent the crankcase. Loosen the drain plug in the bottom plate and allow the oil to drain out slowly.

If dismantled parts are to be left overnight or longer, dip them in clean compressor oil and wrap them in oil soaked rags to prevent rusting.

If a faulty part in the compressor is to be replaced, it may be necessary to remove other parts first. Therefore, the disassembly instructions that follow are arranged in the order for complete disassembly. See figure 3-25, page 3-15, for an exploded view of the compressor. Refer to table 3-2, page 3-16, for permissible wear limits and table 3-1 for torque values for tightening bolts.

3.1.1 CYLINDER HEAD AND VALVE PLATE ASSEMBLY

WARNING

Do not unscrew capscrews all the way, before breaking seal. Entrapped pressure could result in injury.

- a. Loosen cylinder head capscrews. If the head is stuck, tap it lightly with a wooden or lead mallet to free it. Be careful not to drop the head or damage the gasket sealing surface. Remove cylinder head capscrews and gasket. See figure 3-1.
- b. Remove the discharge valve capscrews, lock washers, stops, and valves. (See figure 3-2.)

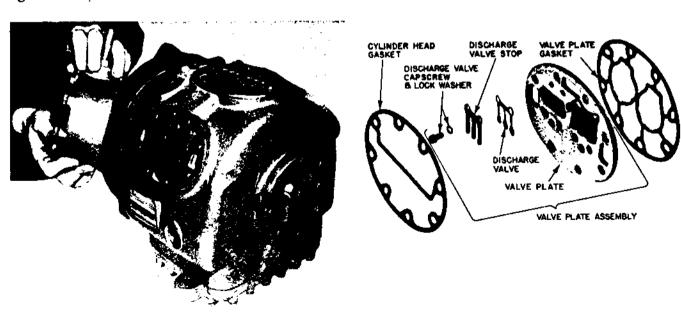


Figure 3-1. Cylinder Head Removal

Figure 3-2. Exploded View of Valve Plate Assembly

(100)

c. Free the valve plates from the cylinder deck by using the discharge valve capscrews, without washers, as jackscrews through the outermost tapped holes in the valve plate, after the valve stops and valves have been removed. (See figure 3-3.) Remove the valve plate gasket.

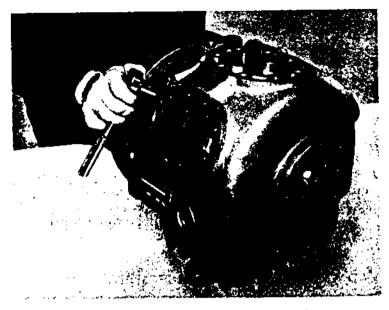


Figure 3-3. Valve Plate Removal

d. Discard valves and gaskets. Use only new valves and gaskets when reassembling cylinder head and valve plate assemblies.

3.1.2 BOTTOM PLATE, STRAINER, AND CONNECTING ROD CAPS

- a. Turn the compressor over, bottom side up, and remove the bottom plate. (See figure 3-4.) Scrape off gasket.
 - b. Remove the oil strainer.

Figure 3-4. Bottom Plate Removal

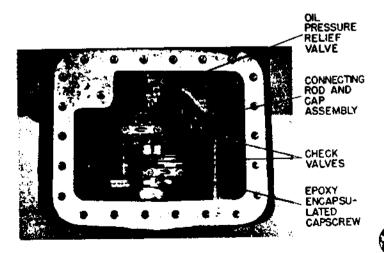
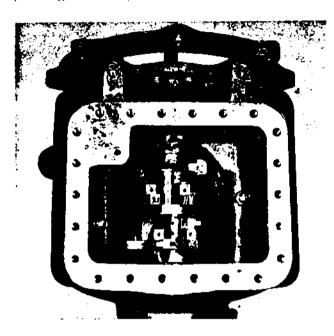



Figure 3-5. Bottom Plate and Oil Strainer Removed

- c. Match mark each connecting rod cap and connecting rod for correct reassembly. Remove the capscrews, flat washers and connecting rod caps. It is recommended that the capscrews and flat washers be discarded and new epoxy encapsulated capscrews and flat washers be installed during compressor reassembly. (See figures 3-5 and 3-6.)
- d. Push the piston rods down so that the piston rings extend below the cylinders. Remove and discard piston rings. Use only new rings when reassembling the compressor. (See figure 3-7.)

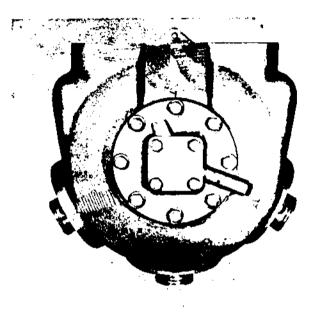


Figure 3-6. Connecting Rod Caps Removed

Figure 3-7. Piston Rings Removed

3. 1. 3 OIL PUMP AND BEARING HEAD ASSEMBLY

a. Remove four capscrews and gaskets, and remove oil pump cover; this will free the oil feed guide retaining spring, cover gasket, and the oil feed guide. (See figure 3-8.)

Figure 3-8. Oil Pump Cover and Spring Removal

b. Remove the two drive segment capscrews and lock washers and remove the drive segment. (See figure 3-9.)

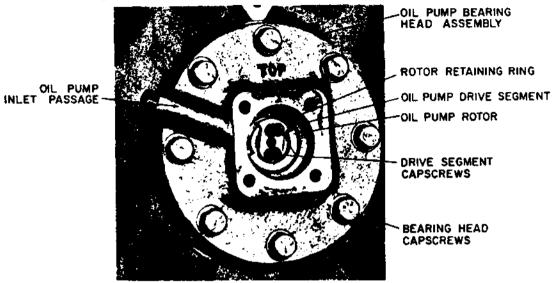


Figure 3-9. Bearing Head with Oil Pump Cover Removed

c. Remove eight capscrews and remove oil pump bearing head assembly, gasket, and thrust washer. Disassembly and repair of the pump and bearing head assembly will be accomplished during inspection and before reassembly. (See figure 3-10.)

Figure 3-10. Oil Pump Bearing Head Assembly and Thrust Washer Removal

3.1.4 SHAFT SEAL AND CRANKSHAFT

- a. Remove capscrews and remove shaft seal cover and carbon washer. (See figure 3-11.)
- b. Tap seal end of crankshaft to loosen seal grip on shaft. Using two long screw-drivers, pry out the shaft seal. (See figure 3-12.)



Figure 3-11. Shaft Seal Cover and Carbon Washer Removal

Figure 3-12. Shaft Seal Removal

CAUTION

Do not allow crankshaft to drop on connecting rods inside the crankcase when removing the crankshaft.

- c. Push piston rod assemblies out of the way and remove the crankshaft and seal end thrust washer.
- d. Remove and check operation of the oil return check valves. (See figure 3-5, page 3-2.) The check valves are free-floating devices and can easily be checked visually.
- e. Remove and check oil pressure relief valve. The oil pressure relief valve is a spring-loaded device which can be checked by using a small piece of stiff wire to ensure that the spring mechanism can be depressed.
 - f. Remove the piston rod assemblies.
- g. Remove the suction strainer. (See figure 3-21, page 3-13.) Clean the strainer screen with a solvent. Inspect the strainer; if damaged, replace it.

3.2 INSPECTION AND PREPARATION FOR REASSEMBLY

3. 2. 1 GENERAL

- a. Clean all parts with an approved solvent such as methyl ethyl ketone (MEK). Use a stiff bristle brush to remove dirt from grooves and crevices.
- b. Inspect all parts for wear and overall condition. Replace any defective or excessively worn parts. Refer to table 3-2, page 3-16, for a list of minimum and maximum wear limit dimensions.
 - c. Inspect suction and discharge valve seats on both sides of the valve plate.
 - d. If unloaders are installed, inspect operation of unloader bypass piston.
 - e. Take inventory of all parts to ensure they are complete.
- f. After cleaning, ensure all moving parts are coated with compressor oil before reassembly.
- g. Use only new gaskets during reassembly. Ensure all metal gaskets (includes cylinder head, valve plate, and unloader or bypass plug gaskets) are installed dry. All fiber gaskets should be finger wiped with compressor oil before installing.

3.2.2 OIL PUMP AND BEARING HEAD DISASSEMBLY AND REPAIR

If it was determined that the oil pump was not operating properly, it is recommended that the entire oil pump and bearing head assembly be replaced to ensure trouble-free operation. However, if the cause of oil pump failure can be determined in the field and replacement parts for the pump are available, the pump can be repaired. The pump end bearing is integral with the bearing head and is not replaceable.

a. Remove the plunger snap rings with snap ring pliers. As each snap ring is removed, the spring guide, plunger spring, and plunger may be removed from the cylinder in the bearing head. (See figure 3-13.) Identify parts to ensure replacement in same cylinder.

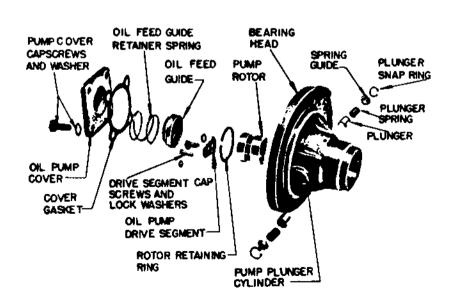


Figure 3-13. Oil Pump and Bearing Head Assembly Exploded View

- b. Push the pump rotor out of the bearing head by forcing against the rotor. Apply force from the bearing side and remove rotor from the opposite side. The pump rotor retaining ring will come out with the rotor.
- c. Clean all parts; coat all moving parts with compressor oil before proceeding with reassembly.
- d. Insert the pump rotor into the bearing head from the side opposite the bearing, with the rotor retaining ring in place on the rotor. Install the rotor retaining ring with the chamfered edge in. Compress the retaining ring (close gap) in order to fit the rotor and ring into their proper positions.
- e. Insert one of the plungers into a cylinder in the bearing head (flat end in); then, insert the plunger spring and spring guide. Insert retaining ring with ring pliers. Force the spring guide down to compress the plunger spring and to allow the retaining ring to fit into its locking groove. Follow the same procedure to reassemble the other plunger spring, guide, and snap ring in its plunger cylinder.

3.2.3 PISTONS, PINS, AND CONNECTING RODS

- a. Piston and pin, and connecting rod and rod cap are matched sets and must not be interchanged. That is, if either the piston or piston pin is to be replaced, you must replace both of them. Likewise, if a connecting rod or rod cap must be replaced, both must be replaced.
- b. Match mark and disassemble pistons, pins, connecting rods, and caps. (See figure 3-14)

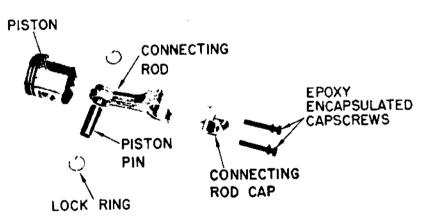


Figure 3-14. Connecting Rod, Piston, and Pin

- c. Check wear dimensions of disassembled parts to determine if they are worn beyond limits given in table 3-2, page 3-16.
 - d. If parts are worn beyond limits, replace them in matched sets as specified above.
- e. Coat piston pins with compressor oil and reassemble pistons, pins, and connecting rods in matched sets.

3.3 COMPRESSOR REASSEMBLY

3.3.1 GENERAL

- a. Ensure compressor and component parts are ready for reassembly. Refer to paragraph 3.2.
- b. Prior to installing new piston rings, it is necessary to break the hard glazed surface of the cylinder in order to reduce the wearing-in period of the new rings. Break the glaze by rehoning lightly in an up and down rotating motion. Clean thoroughly after breaking glaze.
- c. The instructions that follow are arranged in the normal order for reassembly of a completely disassembled compressor.

3.3.2 PISTONS, RODS, AND RING REASSEMBLY

- a. The gap between the ends of the piston rings can be checked with a feeler gauge by inserting the ring into the piston bore about one inch below the top of the bore. Align the ring in the bore by pushing it slightly with a piston. The maximum and minimum allowable ring gaps are 0.013 and 0.005 inches (0.33 and 0.127 mm).
- b. Install the piston and rod assemblies up through the bottom of the crankcase and into the cylinders. Allow pistons to extend beyond the top of the cylinder to enable installation of piston rings. Pistons should be installed so that the chamfer, on the connecting rod, faces toward the crankshaft journals. Center rods on each crankshaft throw may be installed in either direction. (See figure 3-15.)

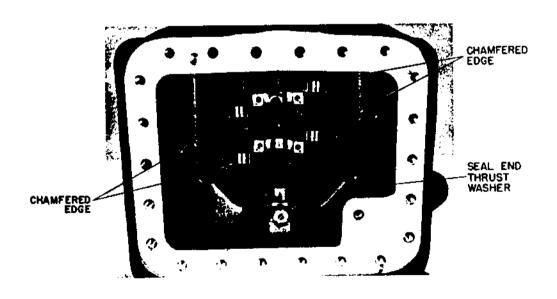


Figure 3-15. Installing Piston Rod Assemblies and Seal End Thrust Washer

- c. Depending on date of manufacture, the compressor may be fitted with double or single ring pistons. This variation may also exist with replacement piston assemblies. If double ring pistons and ring sets are to be installed, both compression and oil rings must be fitted. Also, double ring and single ring pistons may be installed in the compressor.
- d. If using double ring pistons, the oil ring is installed in the groove nearest the bottom and the compression ring in the groove nearest the top. The oil ring is notched on the outside circumference. This notch must be installed towards the bottom. (See figure 3-16.)

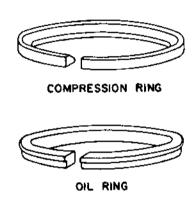


Figure 3-16. Piston Rings

- e. The compression ring is chamfered on the inside circumference. This ring is installed with the chamfer towards the top. If using a double ring piston, stagger the ring end gaps so they are not aligned.
- f. Measure side clearance between ring and ring groove in piston. Maximum dimensions are provided in table 3-2.

3.3.3 CRANKSHAFT AND SEAL END THRUST WASHER

a. Two brass thrust washers are used. The pump end thrust washer is positioned on two dowel pins located on the bearing head and is installed with the oil pump and bearing head assembly. The seal end thrust washer is positioned just ahead of the seal end main bearing on two dowel pins installed in the crankcase. Both thrust washers should be inspected for wear and scoring before reassembly.

CAUTION

Do not allow crankshaft to drop on connecting rods inside the crankcase when installing the crankshaft.

b. Install the seal end thrust washer on the two dowel pins. (See figure 3-15.) Ensure piston rods are pushed out of the way and install the crankshaft.

3. 3. 4 OIL PUMP AND BEARING HEAD ASSEMBLY AND THRUST WASHER

a. Install the pump end thrust washer on the two dowel pins located on the bearing head. (See figure 3-17.)

CAUTION

Ensure thrust washer does not fall off dowel pins while installing oil pump.

b. Install the bearing head assembly with a new gasket on the compressor crank-shaft. Carefully push oil pump on by hand to ensure that the thrust washer remains on the dowel pins and the bearing head assembly mounts flush to the crankcase body. The top of the bearing head assembly is marked on the mounting flange.

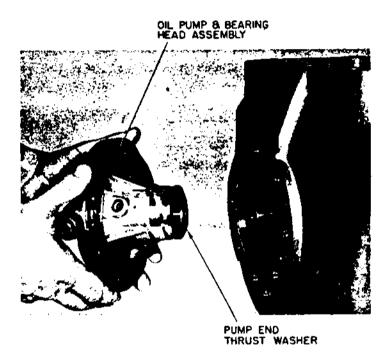


Figure 3-17. Installing Oil Pump and Bearing Head Assembly and Pump End Thrust Washer

- c. Align the gasket and install the eight capscrews and gaskets in the mounting flange. Refer to table 3-1, page 3-16, for applicable torque values.
- d. Install the drive segment with the two capscrews and lock washers. (See figure 3-9, page 3-4.)
- e. Insert the oil feed guide with the large diameter in. Insert the guide retaining spring so that it fits over the smaller diameter of the feed guide. (See figure 3-8, page 3-3.) The pump cover can now be installed.
- f. Place the pump cover, with a new gasket, over the guide retainer spring and compress the spring to enable installation of the cover capscrews. Tighten the cover capscrews to torque values given in table 3-1.

3.3.5 CONNECTING ROD CAPS

a. Do not tap piston with hammer if rings are caught at entrance to the cylinder. Using a ring compressor, squeeze rings sufficiently to allow piston to be pushed down into the cylinder. Ensure that ring ends are staggered so that the gaps are not aligned, and lightly tap piston down into the cylinder. (See figure 3-18.) The ring compressor can be easily fabricated from a piece of sheet metal.

Figure 3-18. Installing Pistons

b. Install connecting rod caps on connecting rods using new epoxy encapsulated capscrews and flat washers. Reuse of the old capscrews is not recommended. Ensure that the caps are installed on the dowel pins. Torque capscrews to torque value shown in table 3-1, page 3-16. Ensure freedom of movement of crankshaft after capscrews are torqued on each rod cap.

3.3.6 CHECK VALVE, RELIEF VALVE, STRAINER, AND BOTTOM COVER PLATE

- a. Check operation and reinstall check valves and relief valve. (See figure 3-5, page 3-2.) The check valves are free-floating devices and can easily be checked visually. The relief valve is a spring-loaded device which can be checked by using a small piece of stiff wire to ensure that the spring mechanism can be depressed.
 - b. Clean and reinstall the oil strainer.
- c. Using a new gasket, install the bottom cover plate. See figure 1-1 for relative location of compressor mounting flanges. Torque cover capscrews, in a diagonal pattern, to torque value shown in table 3-1.

3.3.7 SHAFT SEAL

a. Install new shaft seal assembly, cover gasket, and cover plate only. Never reinstall a used seal assembly and gasket. A new carbon washer should never be installed in a used cover plate. When installing the seal assembly, use care not to damage carbon washer or seal seat. If the new carbon washer is damaged during installation, replace it with a new one. (See figure 3-19 for an exploded view of the seal assembly.)

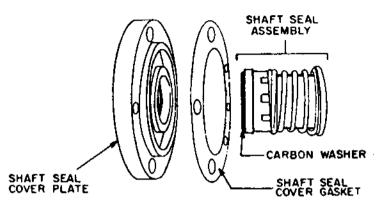


Figure 3-19. Shaft Seal Exploded View

- b. Remove new carbon washer from new seal assembly. Lubricate shaft and neoprene seal bellows where it contacts the shaft. Slide seal assembly onto shaft until neoprene bellows starts to grip the shaft. (See figure 3-20.)
- c. Install the old carbon washer in the new seal seat. Install two capscrews in opposite sides of the old cover plate. (See figure 3-20.) Draw up capscrews evenly to properly position new seal assembly against shoulder on shaft. Remove capscrews and old carbon washer and cover plate.

Figure 3-20. Installing Shaft Seal

d. Lubricate new carbon washer and carbon washer seal seat with refrigerant oil. Install new carbon washer in seal seat, taking care not to damage the carbon washer or the seat. Ensure that notches in carbon washer are aligned with two small knurls inside the seal seat. Install the new cover plate and gasket. Draw capscrews down evenly to prevent damage to carbon washer.

3.3.8 SUCTION AND DISCHARGE VALVE PLATE ASSEMBLY AND CYLINDER HEAD

- a. Install only new valves and gaskets, and do not interchange valves.
- b. Install suction valve positioning springs on dowel pins. Assemble positioning springs with spring ends bearing against cylinder deck. The spring will bow upward in the middle. (See figure 3-21.)
 - c. Place suction valves on dowel pins, over the positioning springs.
- d. Place valve plate and new valve plate gasket on cylinder deck, ensuring that the valve plate is properly positioned on the four dowel pins (the top head has five dowel pins). (See figure 3-22.)
- e. Using a small screwdriver, operate the suction valves to ensure that the valve tips are not being held by the valve plate gasket. (See figure 3-23.)

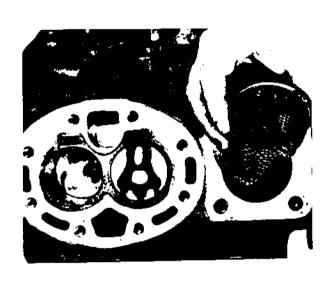


Figure 3-21. Installing Suction Valves and Strainer

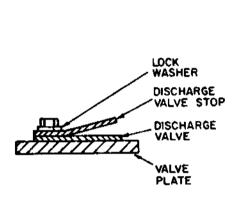



Figure 3-22. Installing Valve Plate and Gasket

Figure 3-23. Checking Suction Valve

- f. Install discharge valve and discharge valve stop with capscrews and lock washers. See figure 3-24.) Torque capscrews to value shown in table 3-1, page 3-16.
- g. If capacity control unloaders are used, they are installed in the right and left cylinder heads. The center bank has a flange connection for the discharge service valve. Install cylinder head and new cylinder head gasket with capscrews, ensuring that the gasket and cylinder head are properly positioned on the valve plate. Torque the capscrews, in a diagonal pattern, to value shown in table 3-1.
 - h. Repeat the above procedure for the other two cylinder banks.

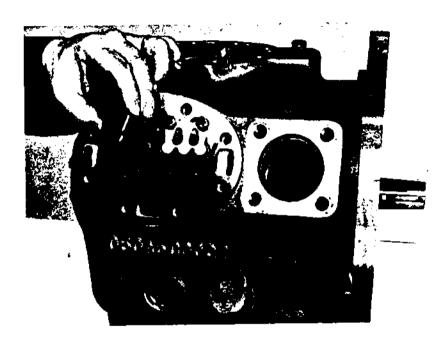


Figure 3-24. Installing Discharge Valve and Valve Stop

3.3.9 SUCTION STRAINER

NOTE

Suction strainer has been preformed to fit into suction cavity.

Remove and clean the suction strainer. (See figure 3-21.) Check it for damage. If it is damaged, replace it. Reinstall the suction strainer and valve blank-off pad using a new gasket.

3.3.10 ADDING OIL

Add the proper oil charge to the compressor through the oil fill plug or suction service valve cavity. (See figure 1-1.) Refer to paragraph 1.2 for the required oil charge.

3.4 REINSTALLING COMPRESSOR

Refer to paragraph 2.2.2 and the unit service manual to reinstall the compressor. Allow compressor to run for 4 to 5 hours before checking new seal assembly for leaks.

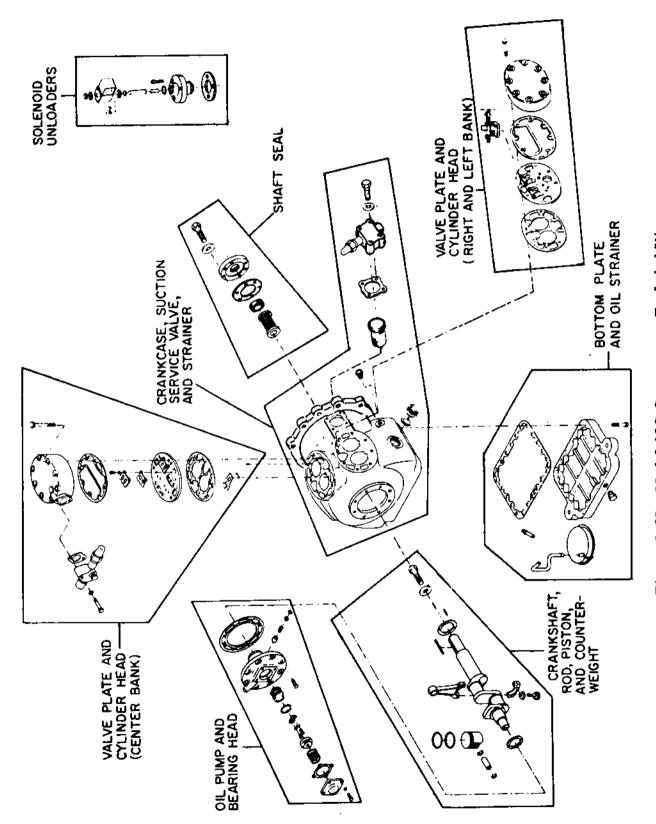


Figure 3-25. Model 05G Compressor Exploded View

Table 3-1. Torque Values

SIZE	THREADS	TORQUE RANGE		USAGE		
DIAM(in.)	PER IN.	FT-LB	MKG	UOAGE		
1/16	27 (pipe)	8-12	1.11 - 1.66	Pipe Plug - Crankshaft		
1/8	27 (pipe)	15-20	2.07 - 2.77	Oil Return Check Valve - Crankcase		
	20 (pipe)	20-25	2,77 - 3.45	Pipe Plug - Press. Gauge Connection		
1/4	20	8-12	1.11 - 1.66	Connecting Rod Capscrew		
	28 28	12-16 6-10	1.66 - 2.21 0.83 - 1.38	Unloader Valve Oil Pump Drive Segment		
No. 10	32	4-6	0.55 - 0.83	Oil Pump Drive Segment		
5/16	18	16-20	2.21 - 2.77	Cover Plate - Pump End Bearing Head Discharge Valve		
3/8	16	25-30	3.46 - 4.15	Pump End Bearing Head Bottom Plate – Crankcase Compressor Foot Seal Cover		
	16	30-35	4.15 - 4.84	Cylinder Head		
7/16	14	55-60	7.61 - 8.30	End Cover - Crankcase		
1/2	13	55-80	7.61 - 11.06	Suction Valve		
1-1/2	18 NEF	35-50	4.84 - 6.91	Oil Level Sight Glass		

NEF - National Extra Fine

Table 3-2. Wear Limits

PART NAME	FACTORY MAXIMUM		FACTORY MINIMUM		MAXIMUM WEAR BEFORE REPAIR	
PARI NAME	INCHES	MM	INCHES	MM	INCHES	MM
SEAL END Main Bearing Dia Main Bearing Journal Dia	1.8760	47.6504	1.8725	47.5615	.002	0.051 0.051
PUMP END Main Bearing Dia Main Bearing Journal Dia	1. 3755	34.9377	1.3735	34. 8869	.002	0.051 0.051
CONNECTING ROD DIA Piston Pin Bearing	1.3765 .6880	34.631 17.4752			.002	0.051 0.025
CRANKPIN DIAMETER Throw (Height)	. 9698	24.6329	1.3735 .9678	34.8869 24.5821	. 0025	0.0635
THRUST WASHER (Thickness) Pump End Seal End	. 145 . 157	3. 683 3. 987	. 144	3.658 3.937	.040* .040*	1.016 1.016
CYLINDERS AND PISTONS Bore Piston (Dia) Piston Pin (Dia) Piston Pin Bearing Piston Ring Gap Piston Ring Side Clearance	2.0010 .013 .002	50.8254 0.330 0.051	1.996 .6873 Thumbfit .005 .001	50.0698 17.4574 0.127 0.0254	.002 .002 .001 .025 .002	0.051 0.051 0.025 0.635 0.051
SUCTION VALVE RECESS (Depth)	.082	2.083	. 078	1.981	.090	2.286

^{*} Maximum end clearance between thrust washer and shaft.